Problem Set

MA18Q3-E

mail@kenjisato.jp

Day 4

[1] Basic properties of growth rates.

Romer 4e, Problem 1.1. The growth rate of a variable equals the time derivative of its log, i.e. $\dot{X}(t) / X(t)=\frac{d}{d t}[\ln X(t)]$, where $\dot{X}(t)=\frac{d X}{d t}(t)$. Use this fact to show:

1. If $Z(t)=X(t) Y(t)$, then $\dot{Z}(t) / Z(t)=[\dot{X}(t) / X(t)]+[\dot{Y}(t) / Y(t)]$.
2. If $Z(t)=X(t) / Y(t)$, then $\dot{Z}(t) / Z(t)=[\dot{X}(t) / X(t)]-[\dot{Y}(t) / Y(t)]$.
3. If $Z(t)=X(t)^{\alpha}$, then $\dot{Z}(t) / Z(t)=\alpha \dot{X}(t) / X(t)$.

[2] Application of the growth rate formulas

Jones 2017, p. 67. Suppose that x and y grow at constant nominal rates given by 0.04 and 0.02 . Calculate the growth rate of z in each of the following cases.

1. $z=x y$
2. $z=x / y$
3. $z=y / x$
4. $z=x^{1 / 2} y^{1 / 2}$
5. $z=(x / y)^{2}$
6. $z=x^{-1 / 3} y^{2 / 3}$

[3] Estimation

Let $y=A k^{\alpha}$. We observe that $\alpha=0.3$ and y and k grow at a constant annual rate of 0.05 and 0.1 , respectively. Estimate the growth rate of A.

TIPS

Recall that the (average) nominal growth rate can be estimated by

$$
\begin{aligned}
& g_{X}:=\log X(t+1)-\log X(t) \\
& g_{Y}:=\log Y(t+1)-\log Y(t) .
\end{aligned}
$$

The nominal growth rate, $g_{X Y}$, for $X Y$ is

$$
\begin{aligned}
g_{X Y} & =\log X(t+1) Y(t+1)-\log X(t) Y(t) \\
& =[\log X(t+1)-\log X(t)]+[\log Y(t+1)-\log Y(t)] \\
& =g_{X}+g_{Y} .
\end{aligned}
$$

